Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
MacDonald, James H; Clary, Renee M; Archer, Reginald; Broadway, Ruby (Ed.)Participation in authentic scientific research has been shown to greatly benefit undergraduate students, both in terms of perception of science and knowledge of scientific concepts. We define authentic scientific research as projects in which results are unknown prior to performing experiments and are appropriate for presentation in peer-reviewed scientific journals and/or scientific conferences. Kindergarten through grade 12 (K–12) students have less frequent opportunities to participate in authentic research than university students, and the effects of research participation on such students are less well understood. From 2013 to the present, we organized two collaborations with different groups of K–12 students and teachers, each aimed at engaging K–12 students in authentic geoscience research, with a focus on K–12 students from excluded backgrounds who may have had restricted access to resources. First, the Malcolm X Shabazz Aquatic Geochemistry Team was an initiative to involve high school students at Malcolm X Shabazz High School in Newark, New Jersey, USA, in research focused on the activities of microbial communities inhabiting streams and rivers in New Jersey and eastern Pennsylvania. Second, the Integrating Continuous Experiential Activities for Geoscience Education (ICE-AGE) project is a Pathways into the Earth, Ocean, Polar and Atmospheric & Geospace Sciences (GEOPAths) project funded by the National Science Foundation that involves K–12 students in experiential learning through diverse means, including involving middle school students taking part in a summer program pseudonymously referred to as the Liberation Literacy Program (LLP) in geoscience research on a number of topics. Here, we report qualitative observations of the successes and challenges of these programs, as well as lessons learned, which may be useful for other researchers seeking to involve groups of K–12 students in authentic geoscience research education.more » « lessFree, publicly-accessible full text available June 16, 2026
-
Abstract Existing classifications of snout shape within Crocodylia are supported by functional studies, but ecological surveys often reveal a higher than expected diversity of prey items within putatively specialist groups, and research into bite force and predation behaviour does not always reveal significant differences between snout shape groups. The addition of more distantly related crocodyliforms complicates the ecomorphological signal, because these groups often occupy a larger area of morphospace than the crown group alone. Here, we present an expanded classification of snout shapes and diets across Crocodyliformes, bringing together geometric morphometrics, non-hierarchical cluster analyses, phylogenetic analyses, ancestral state reconstructions, ecological surveys of diet, and feeding traces from the fossil record to build and test predictive models for linking snout shape and function across the clade. When applied to living members of the group, these new classifications partition out based on differences in predator body mass and maximal prey size. When applied to fossils, these classifications predict potential prey items and identify possible examples of scavenging. In a phylogenetic context, these ecomorphs reveal differences in dietary strategies and diversity within major crocodyliform clades. Taken together, these patterns suggest that crocodyliform diversity, in terms of both morphology and diet, has been underestimated.more » « less
An official website of the United States government
